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Abstract 
 
We show that a lowest photon's angular mode 1=l   in a nano-layered microsphere allows a qutrit 
quantum state. Such a state possess the maximum value of a vacuum field's amplitude and can have 
rather long decoherence time in microsphere coated by an alternating metallo-dielectric stack due to 
high  Q -factor of field oscillations. We found that such photons allow generating entanglement since 
the interaction with two-level atoms in a microsphere if a strong classical driving field is applied. 
PA SC 42. 50.Dv 
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1 Introduction 
 
Qutrit is a three-level quantum state which nowadays finds various applications in a quantum 
informational technology, enabling, for example, more efficient use of communication 
channels in quantum cryptography (see [1], [2], [3], [4], [5] and references therein). Various 
new physical systems are suggested, where the qutrits instead of qubits (two-level quantum 
system) may be produced by the current quantum optical techniques [6], [7]. So in Ref.[8] 
have been exploited properties of spatial angular momentum in paraxial light beams. In this 
paper we propose to use the angular momentum properties of photon's modes in microspheres 
for a qutrits creation. 
 
In the last few years quantum effects in microspheres have been widely studied, both 
theoretically and experimentally [9], [10], [11]. One of significant feature of these effects was 
coupling nanocrystals (quantum dots) to a whispering gallery mode (WGM, electromagnetic 
modes having large angular number  1>>l  ) of a silica microsphere, which can produce a 
strong coherent interaction between the photons modes and various electronic states. In 
contrast to WGM   the electromagnetic oscillations with small angular numbers  K2,1=l in 
bare microspheres are not studied adequately due to small radiating quality ( Q   factor,  

)Im(2/)Re( ωω=Q  ) of such oscillations. However, as was shown in a number of works 
[12], [13], [14], [15]  Q   factor of such oscillations can be essentially increased up to the 
values typical for WGM  98 10,10∼Q  , if one deposits the alternating structure of layers 
(spherical stack) onto the surface of microsphere. The band of strong reflection (small 
transmittance) is formed in the frequency spectrum of such system due to electromagnetic 
interference effects. In microspheres two different polarization,  TM   and  TE  , are allowed 
but in case of true microspheres the eigenfrequencies of such modes are quite different and 
therefore  TM   and  TE   waves can be studied separately. In a lowest case of the angular 
number  1=l   a photon in microsphere has three orthogonal states with azimuthal numbers  

1,0,1−=m  . So the superposition of such states may represent a qutrit as a three-level system. 
 
In this paper we study the properties of qutrit photons state and some features which can 
allow one the experimental realization of such a state in microspheres. We suggest exploiting 
a zone of high reflectivity having high  Q   factor in a coated microsphere. In this case a qutrit 
can be well isolated from a surrounding medium and may have rather long decoherence time. 
This paper is organized as follows. In Section 2 we derive basic equations. In Section 3 the 
quantization procedure of field in a coated microsphere is developed and vacuum field 
amplitude is evaluated. In Sec.4 the interaction of photons with two-level atoms is studied. 
Section 5 presents the computation of frequency spectrum of a microsphere coated by 
metallo-dielectric stack, what may allow controlling the qutrits. In last Section, we summarize 
our results. 
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2 Basic equations 
 
Fig.1 shows the structure of a system. Due to the spherical geometry of the problem, we 
characterize the state of electromagnetic field in microsphere with indexes  ν  ,  l   and  m   
(radial, angular and azimuthal quantum number). In this case for a photon state we write  

〉→〉 lk
nn ν||  ,  lk νωω →r   (the eigenfrequencies of sphere do not depend on azimuthal 

quantum number [16], [17], but field does),  lmk EE ν→r  . Such optical field in microspheres 
may be exploited to produce the qutrit photon states.  
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Fig. 1 Geometry of system 

 
The idea comes from the next. The eigenoscillations of field in the spherical symmetry 
systems possess by natural quantization both angular  l   and azimuthal  m   quantum numbers 
assuming the integer values with  lm <=||  . Due to high symmetry the eigenfrequencies of 
oscillations do not depend on azimuthal number and they have  12 +l   rates of degeneracy. In 
WGM regime ( )1>>l   the eigenfrequencies spectrum has large degree of degeneracy. So we 
have to exploit the oscillations with small angular numbers  l  . In microsphere the lowest 
oscillations case with  1=l   allows only three  1−=m  ,  0=m   and  1=m   orthogonal field 
states, which have the same frequency  1νω . Such states form a three-level orthogonal basis 

101
0011

=−=−=
=−

mmm
,  

101
0100

=−=−=
=

mmm
 and  

101
1001

=−=−=
=+

mmm
 , which can 

be utilized as orthogonal basis for a qutrit state. In general a state vector  ψ   can be written 
in the form  

101 321 +++−= qqqψ  , where the complex coefficients  321 ,, qqq   amount to six real  
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parameters. However, if we write them as  ii rq =    iie ϕ   ,  3,2,1=i   and factor out a global 
irrelevant phase, the superposition of such states can be written in the form 

101 321
321 +++−= ΦΦΦ iii erererψ     (1) 

Imposing  ψ   to be of unit norm, we have  12
3

2
2

2
1 =++ rrr  . One can satisfy this 

parametrizing amplitudes  ri   in form  ηζ cossin1 =r  ,  ηζ sinsin2 =r   and  ζcos3 =r  , 
where  2/,0 πηζ ≤≤  , whereas  π2,0 21 ≤ΦΦ≤  . Eq. (1) coincides with expression for a 
single qutrit state. Operator representations and various aspects of measurement of 
entanglement of qutrit's states are discussed in [3], [4]. The entanglement of qutrit's 
superpositions may be destroyed due to exchange of energy between the microsphere and 
environment which leads to a quantum decoherence phenomenon. Decoherence can transform 
the quantum superposition into a statistical mixture [18]. Let us evaluate the decoherence time 
of a quantum state in a microsphere. Note the mesoscopic systems similar microspheres with 
radius  mµ1   and less may have both microscopic and macroscopic features. Following [18] 
the decoherence time is given by  )2/( 22 xTkm BeRD ∆= hττ  , where  el   is the electron mass,  
T   is a temperature,  x∆   is a typical spatial scale,  1−∼ γτ R  ,  γ   is a relaxation rate, in our 
case  Qff 2/)Re()Im( ==γ  , so  QR ∼τ   and  f   is a photon mode frequency. One can see  

Dτ   may be quite long if  Q  -factor of corresponding photons mode has large enough value. 
For parameters  KT 7.2=  ,  810=Q  ,  nmdx 50= ,  THzf 500=   ( nm600=λ  ) one obtains  

RD ττ 23.0=  , which is in agreement with the experiment involved Rydberg atoms interacting 
with photon coherent field [19]. 
 
3 Field quantization 
 
In order to study quantum properties of a three-level state in microsphere, we shall quantize 
such a state and calculate the field's vacuum amplitude (field per photon [20]) for a coated 

microsphere case. The electric and magnetic fields  E  ,  H  in spherical polar coordinates 
( ),, ϕθr   can be calculated by means of scalar functions, called Debye potentials [16] and 
have the form 

 ,),,(),,(

,),,(),,(

,,

,,

0

0

0

ϕθϕθ

ϕθϕθ

ν
νµ

ε

ωεεν
ν

rHrH

jrErE

lm
ml

i
lm

ml

∑=

−∑=
     (2) 

[ ],ˆ),,(ˆ),,(ˆ),,(),,( ϕϕθθ ϕθεϕθεϕθεϕθ erererArE rrvlvlm ++=
→

  (3) 

[ ],ˆ),,(ˆ),,(ˆ),,(),,( ϕϕθθ ϕθϕθϕθϕθ erherherhArH rrvlvlm ++=
→

  (4) 

where  ti
ll eAA ω
νν 0=  ,  lA ν0   is a complex amplitude,  ε   is a dielectric permittivity and ϕθ ,,ˆre   

are the basis set for spherical coordinates,  j   is an electrical current.  
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Due to the modes orthogonality we can study the modes of oscillations separately. In this 
stage we omit the indexes  v ,  l ,  m   for notational simplicity. Further we suppose a simple 
radial-symmetric case  rerjj ˆ)(=

r
 . One can see that in the case  0=l   fields  θϕ EH ,   are 

zero and current  )(rjr   in (2) contributes in spherical symmetric part in  rE   only [13], [21], 
[22]. Thus  )(rjr   can be responsible e.g. for processes of inverting of population in the active 
core of microsphere. It has pure classical nature and can contribute in a classical driving field 
only. Further the  0=l   case is excluded from the quantization. 
 
As it was already mentioned, two different polarization,  TM   and  TE  , are allowed. In  TM   
case  0=rh  , while for  TE   case  0=re  . Since the eigenfrequencies for  TM   and  TE   
case rather differ, we study here the  TM   wave case. Using the Debye potential approach one 
can write the field's components in (3), (4) in the next form  

 ,),,( , ),,( ssss iAfrhAFr == ϕθϕθε      (5) 
 where  ),,( ϕθrFF ss =  ,  ),,( ϕθrff ss =  ,  ϕθ ,,rs =  ,  

,
sin

1  ,1  ,)1( 2

2
0

2

2
0

22
0 ϕθεθεε ϕθ ∂∂

Π∂
=

∂∂
Π∂

=Π
+

=
rrk

F
rrk

F
rk

llFr    (6) 

.1  ,
sin
1  ,0

00 θϕθ ϕθ ∂
Π∂

=
∂
Π∂

−==
rk

f
rk

ffr     (7) 

In Eqs.(6)-(7)  ),,( ϕθrΠ   is Debye potential, which for TM waves is given by  
,),()(),,( ϕθϕθ m

ll YrRr =Π=Π     (8) 
where  ),( ϕθm

lY   are spherical functions,  0>l  ,  ck /0 ω=   , whereas the radial part  )(rRl   
obeys the spherical Bessel equation. Equations (1)-(8) contain all the necessary physical 
information regarding the quantization of photons states in microsphere. 
 
To proceed the quantization of an electromagnetic field in microsphere, we rewrite the fields 
(3)-(4) in the next real-value form 

,)()(
,)()(

22
1

2
1

2
1

s
i

sss

ssss

fAAHHH
FAAEEE

∗∗

∗∗

−=+→
+=+→

    (9) 

 where  ϕθ ,,rs =  , asterisk in  ∗A   denotes the complex conjugate of  A  . The fields energy 
in a sphere with volume  V   reads 

,)(
2
1 222

0
2

0 he
V

dVHEW ββµεε +=+= ∫    (10) 

 where  2
eβ   and  2

hβ   are electric and magnetic parts of energy, which with the help of (10) 
can be written as  

,))(()(
8

222202 dVFFFrAA r
V

e ϕθεεβ +++= ∫∗     (11) 
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.)()(
8

22202 dVffAA
V

h ϕθ
εβ +−−= ∫∗      (12) 

Substituting (6)-(7) in (11)-(12), after some algebra the quantities  2
eβ   and  2

hβ   acquire  
rather simple forms  

,)}0()0(1)()(1)({23
00

2 ′′ −+= lllllle RRRRIGa
ε

κκ
ε

κεβ     (13) 

,)(23
00 κεβ llh IGa=       (14) 

where  canak c /000 ωκ ==   ,  cn   is a refraction index and quantity  

,)(1)( 2

0
3 dyyRI ll ∫=
κ

κ
κ      (15) 

is determined by the radial structure of field only. The angular part  2
lG   in (13)-(14) can be 

calculated in the general form (see Appendix A)  

).1(])()(
sin

1[sin 22
2

0

2

0

2 +=
∂
∂

+
∂
∂

= ∫∫ llYYddG
m

l
m

l
l θϕθ

θθϕ
ππ

   (16) 

Note the boundary conditions  0)0( =lR  ,  0)0( =′
lR   and  0)( =κlR  ,  0)( =′ κlR   completely 

determine a spectrum of eigenfrequencies  cancll /0νν ωκ =  . First conditions correspond to the 
fields limitation in the center of sphere  0=r  , while the second reflect the vanishing of the 
transverse electrical and magnetic fields in boundary of a sphere (quantized sphere). One can 
see from (13)-(14), that when such conditions hold, the important rigorous equality of electric 
and magnetic energies of field in sphere follows,  22

he ββ =  . Note the form of equality  
22
he ββ =   does not change for more complex multilayered spherical structures deposited in a 

surface of microsphere (see Appendix B). We write down such equality in the next form  
,)()1(// 3

0
23

0
22 κβββ lhe Illaa +==≡      (17) 

Now  W   in (10) can be rewritten as  

}.)(){(
8

22
0

2
3
0

∗∗ −−+= AAAAaW εβ     (18) 

Eqs. (17) and (18) have the same form in both  TM   and  TE   cases. In treating (18) we find 
it convenient to introduce  aA Ε=  ,  +∗ Ε= aA  , where  Ε   has unit of field,  +a   and  a   are 
creation and annihilations field operators ( 1],[ =+aa ) in the appropriate modes with 
frequency  ω  . After that  W   in (18) becomes the fields Hamiltonian operator  

)2/1()2/1(2 4
223

0
0 +=+= ++ aaaaaH f ωβ ε hE  , with expectation value 

)2/1()2/1(
4

2 0223 +=+Ε= nnanHn f ωεβ h    (19) 
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From (19) the amplitude  E   for a vacuum state  0   can be written in the next form  

, ,
)()1(3

16
3
16)(  ,)()(

2/132/1

20 lm
l

lmlm Ill
κκ

κ
πκ

β
πκκκ =








+

=







=∆∆== EEE   (20) 

 
where  ( ) 2/1

00 2/ Vεωh=E   is well-known amplitude of the vacuum field (field per photon) for 
a plane geometry case[20], which does not dependent on the structure of field, and  

3/4 3
0aV π=   is a volume of sphere. The quantity )(κlm∆   in (20) defines the correction of 

such amplitude due to the spherical geometry. Equation (20) provides the solution of the 
vacuum field problem. One can see the amplitude  )(κE   in the spherical geometry depends 
on the angular  l   number and also on the radial number ν   through the eigenfrequencies  lνκ . 
One can see from (20), what value  )( lmκE   may decrease with increasing angular number  l  . 
However, the evaluation is proved to be intricate whereas both eigenfrequencies  lmκ   and 
quantity  )( lmlI κ   also depend on  l  . Corresponding formulas for  )( lmκE   cannot be written 
down for a general case. Therefore in order to estimate the influence  l   we shall exploit some 
simple model in which one can easily calculate necessary variables. So we apply derived 
formulas to a simplest case of a hollow metallized microsphere with  1=ε  , in this case  

)(κE   can be written in analytical form. For such a microsphere the radial solution in (8) has 
form  )()/2()( 2/1

2/1 yJyyR ll += π   [16], where  )(yJl   is Bessel functions,  rky 0=  . Due to 
the perfectly conducting walls the boundary conditions of equality to zero the transverse 
component of the electromagnetic field obeys and the fields volume in the microsphere fits 
the volume of microsphere. The boundary conditions  0=θE   and  0=ϕE   at  0ar =   for  
TE   waves result in the eigenfrequency equation  0)( =κlR   in form  

.0)(2/1 =+ κlJ       (21) 
The solution of this equation we write as  lνκ  . Now for calculation  )(κlI   in (15) we will 

use (21) (see Appendix C (43)). After that  )(κE   in (20) for  TE   waves becomes  

l
l

d
dJll νκκ

κ
κπκκ =


















+=

−

+   ,)(
16

)1()(
2/12

2/1
0EE    (22) 

Similar calculations for  TM   waves provide the eigenfrequencies equation  0)( =′ κlR   or  
.0)(2)( 2/12/1 =+ ′

++ κκκ ll JJ      (23) 
 In this case  )(κE   in (20) is given by  

llJllll νκκκ
κ

πκκ =



 +

−+=
−

+   ,)()11(
4

)1()(
2/1

2/120EE   (24) 

Now we examine the asymptotic of the received formulas.  
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For ll >>νκ  we use the asymptotic of Bessel functions [23] 

)2/sin()/2()( 2/1
2/1 πκπκκ lJl −∼+ . From above formulas one can derive the approximate 

values for eigenfrequencies: for TM   case  )12)(2/( −+= νπκν ll  , and for TE  case  
)2)(2/( νπκν += ll  , where  ..2,1=l  ,  ..2,1=ν  , which are in agreement with [24]. 

However direct solution of (21) and (23) shows, that for large  ∼l lνκ   these formulas longer 
are not valid and we have to use numerical calculations. 
 
In Fig.2(a,b) are shown the dependences of the amplitudes ratio  0/)( EE vllm κ=∆   in (24) and 
(22) for various radial  ν   and angular  l   numbers for a metallized microsphere case.  
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Fig. 2. Dependence of the dimensionless vacuum field 0( ) /l lE Eν νκ∆ =  for different radial ν  
and angular l quantum numbers for a metallized microsphere case. One can see that lν∆  has 

maximum value for l=1, i.e. for a qutrit state of field, a)TM case, b)TE case. 
 
Fig.2(a) shows the  TM   modes case, and Fig.2(b) shows the  TE   mode case. One can see 
that  lν∆   has maximum value for  1=l   in both  TM   and  TE   cases, which answers to a 
qutrit state of field. Also  lm∆   quickly decreases at increase angular number  l  . Further we 
will concentrate in the  1=l   mode case. 
 
4 Atom-field entanglement 
 
Now we consider  N   identical two-level atoms in a microsphere simultaneously interacting 
with a  1=l   single-mode field and driven by a classical field. Such an external field can be 
generated e.g. by a radial-symmetric current  )(rj   due to plasma oscillations  0=l   in thin 
metallic or semiconducting layers of the spherical stack. The Hamiltonian in the Schrö dinger 
picture is given by (assuming  1=h ) [20] 
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[ ] ,)cos()(  ,
2

 ,

1
1

1

0
0

10

x
jj

N

j
exa

z
j

N

j

taaHaaH

HHH

σωωσω
ν ℘⋅Ε++Ε=+=

+=

∑∑
=

++

=

rr   (25) 

where  )(κEE =v    is the vacuum field amplitude (see (20)),  +a   and  a   are the creation and 
annihilation operators,  exE   and  ω   are amplitude and frequency of the external classical 
field accordingly,  0ω   is the atomic transition frequency,  aω   is the cavity frequency for 
mentioned  1=l   mode,  j℘   is the dipole moment of j  atom, and  zyx

j
,,σ   are Pauli matrices. 

To obtain the evolved wavefunction of such a compound system we make a few of unitary 
transformations. We use the free Hamiltonian  0H   for the transformation to the interaction 
picture [20] (unitary transformation has form  )exp()exp( ABA αα −⋅⋅   with  0HA =  ,  

1HB = ). Now such the interaction Hamiltonian can be written as following 

( ) [ ],)sin()cos(
2
1

2
1

11
int1 ttaeeag y

j
x
jj

N

j
j

ti
j

ti
j

N

j

∆′+∆′Ω++= ∑∑
=

+−−+

=

σσσσ δδV   (26) 

where  aωωδ −= 0  ,  0ωω −=∆′  ,  ( )jvjg ℘Ε=
rr

  are the atom-cavity coupling strengths,  

( )jexj ℘Ε=Ω
rr

  are Rabi frequencies and  y
j

x
jj iσσσ ±=±  . In spirit of rotating wave 

approximation (RWA) while deriving  int1V   in (26) we have neglected the terms oscillating 
fast with the frequencies  aωω +0   and  0ωω +  . For the sake of simplicity further we assume 
simplest case when exact resonance  00 =−=∆′ ωω   takes place. Performing in (26) next 
unitary transformation with  x

jj
N
jA σΩ∑= =1  , we obtain from (26) the Hamiltonian in form 

( ) ( )[ ]})sin()cos({
4
1

1
int2 ttaeeaiaeeag j

z
jj

y
j

titix
j

titi
j

N

j

Ω+Ω+−++= −+−+

=
∑ σσσ δδδδV  (27) 

Assuming that for all  jj g,δ>>Ω  , we drop the terms oscillating fast  )exp( tiΩ±∼   in (27). 
Then  int2V   in (27) reduces to the next final form 

( ) x
jj

N

j
xx

titi gSSaeea σδδ ∑
=

−+ =+=
1

int2   ,
4
1V     (29) 

For a case  ggi =   expression (28) is in agreement with Refs.[25], [26]. 
 
To obtain the evolved wavefunction of the system now we consider a photon-atoms states in a 
microsphere initially  0=t   as the next.  
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The atoms  Neee ...21  , which we assume as not correlated  j

N

j
e

1=
Π  , are in exited states, and 

the field is in vacuum state  0  , so the initial state one can write as  j

N

j

e∏
=1

0  , where  je   

and  jg   are the excited and ground states of the  j  -th atom. Using the unitary evolution 

operator  )exp( int20 dti V∫− τ   , where  τ   is the interaction time, the evolved state  )(2 tψ   can 
be written down as (29). 

[ ] ,0)(2)()(
4

exp)(
1

2/1*
11int2 j

N

j
jxSaffai

−++•






 +−= ∏

=

−+ τττψ   (29) 

where  )/)1)(exp()(1 δδττ −−= iif   and we have used in (29) the dressed atomic states  

jjj ge ±=± − (2 2/1  . Since  j±   are the eigenstates of the operator  x
jσ   with eigenvalues  

1±  , we can rewrite (29) as following 

[ ] [ ],20)(0)(2)(
1

2/1

1

2/1
int2 ∏∏

=

−

=

− −−++=−−++=
N

j
jjjj

N

j
jjjj DD λλλλτψ     (30)  

where 4/)(1 τλ ∗= fig jj . In Eq. (30) is used the displacement operator )exp()( aaD ∗+ −= λλλ , 

which produces the coherent state jλ  out of an initial vacuum state 0 . The compound 
atom-field system in (30) is obviously in an entangled state which cannot be expressed as a 
product of atom and field contributions, thus presenting strong correlations between the atom 
and field parts. Such a microscopic-mesoscopic entangled state is usually called the Schrö 
dinger cat state and it consists of an entangled correlating microscopic (atomic) and 
mesoscopic (field) quantum states [19], [27]. Clearly, for the simplest case  0=δ  , we have  

4/jj ig−=λ  , which shows fast direct resonant generation of the Schrö dinger cat states (see 
[28] and reference therein). 
In the interaction picture the wavefunction (30) can be written in form 

+ [ ],2)(
1

2/2/2/1
int1 ∏

=

Ω−Ω−− −−++=
N

j
jj

i
jj

i jj ee λλτψ ττ    (31) 

After appropriate next unitary transformation  we write down the wavefunction (30) in the 
Schrö dinger picture using the atoms states  je   and  jg   as following 

{ },)()()(
1

∏
=

−+ +=
N

j
jjjjS FgFe τττψ     (32) 

where the field part is superposition of photon coherent states in form 

.
2
1)( 2/)(2/)( 00 τωτωτωτω λλτ ajaj i

j
ii

j
i

j eeeeF −+Ω−−−Ω± −±=    (33) 
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This is a maximally entangled state for an atom interacting with a photon. From (32) one can 
see that measurement of the atomic state  je or jg  will produce the so-called even or odd 

coherent states  )(tFj
±∼   in the cavity field, depending on whether  je   or  jg   was found, 

respectively. Now we study some examples of the possible interactions described in Eq. (32). 
As first example we assume in (33)  1=N   case when it is only one atom in microsphere. 
Such a system, which represents a quantum point in a photon point, was studied in [29]. For 
such case a detection of the atom after the interaction time  τ   in level  e   (or  g   ) 
projects the state (32) into 

)()(|or  )()(| ττψττψ −+ == FgFe SS     (34) 
accordingly, which results in a system disentanglement. 
In our second example all atoms in a microsphere have the same properties  ggi =  ,  Ω=Ω j   
and we can rewrite (32) in the form 

{ } ( ) ( ) .)()()()()(
1

jN

j

jNN
S FgFe

N
j

FgFe τττττψ −

=

−+−+ ⋅







=+= ∑  (35) 

In a case of a large number of atoms  1>>N   in (35) the binomial coefficients  
j
N   have 

sharp maximum at  2/Nj =   , (see Fig.3 ) and we can rewrite (35) as following 

[ ] 2/)()()( N
S FFgeC τττψ −+=     (36) 

where  







=

N

N
C

2/
 . Since (36) is expressed as a product of atom and field contributions, such a 

state represents a statistical mixture. 
 

 

Fig.3  Binomial coefficients 
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5 Spectrum of field's transmittance. 
 
Now we discuss some suggestions about experimental excitation of a qutrit state  1=l  . 
Consider a dielectric microsphere and a periodic metallo-dielectric layers deposited on it (see 
Fig.1). We assume that the frequency dependence of  ε   of the dielectric layers can be 
neglected, whereas in the metal layers the dispersive properties are essential and the complex 
dielectric permittivity for Drude model [30] takes the form 

,
)(

1)(
2

c

p

iνωω
ω

ωε
−

−=     (38) 

where  pω   is a plasma frequency, and  cν   is a frequency of collisions, which defines 
damping of oscillations. We use the temporal exponential multiplier in the form  )exp( tiω  . 
For metals such as aluminum, copper, gold, and silver, the density of the free electrons  N   is 
of the order of  32310 −cm  . This means that  116102~ −⋅ spω   [31], so that for visible and 
infrared radiation with  pωω <   and  cνω >>  , the permittivity is negative  0)( <ωε   
according to Eq. (37). The quantity  )(ωε  , in general, is complex when  ν   is finite. The 
electromagnetic fields in the spherical stack one can calculate by means of transfer matrix 
approach from following relations (see details in [14], [32], [33]) 

),(ˆ)( 111 NN ruMruu rrr
⋅=≡      (38) 

where  },{ θφ EHu =   and  ∏ −

=
=

1

1
ˆˆ N

k kMM   is the transfer matrix between inner  1u   and outer  

Nu   layers in the stack. The transfer matrix  M̂   is determined by the refractive indices and 
thicknesses of all layers of the spherical stack and depends on the angular number  l  . Such 
approach allows us to calculate the values of fields in the entire stack starting from the field in 
external boundary. 
 
The eigenfrequency equation for coated microsphere is derived from two conditions. The first 
is the boundedness of solution for fields in a center of microsphere, while the second normally 
is defined by the properties of a field in the external boundary. Most often the Sommerfeld's 
radiation conditions are used: there is only outgoing wave in surrounding medium, because 
there is no reflecting interface to generate a backward wave [16]. Eigenfrequency equation 
contains a field's complex frequency as unknown quantity, which is included in the parameter  

crny c /)(ωω=  , where  )()( ωεω =cn  . Such equation has the next structure 
,0)()())(,( 2111 =−= ωωωω QQnF c     (39) 

matrix  NDMDQ ˆˆˆˆ 1
0 ⋅⋅= −  , and matrix  kD̂   is given by  
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where  )()2( yPl   and  )()2( yGl   are amplitudes of spherical Hankel functions and its derivation 
accordingly [33]. It is difficult to calculate analytically the eigenfrequencies and the frequency 
dependence of the transmittance coefficient. We have studied the spectrum of 
eigenfrequencies and transmittance coefficients numerically for three-layered metallo-
dielectric stack (Fig.1). The solution method of eigenfrequency equation (39) is based on the 
iterative procedure which evaluates complex roots, starting with some initial approach. 
Different initial guess normally converge to different roots. However some roots do not 
change with the change of the initial guess, which confirms the stability of such procedure. A 
suitable eigenfrequencies  1νωω =  of TM  mode with 1=l  (see below) are found from (39). 
The following parameters have been used in calculations: the geometry of a system is  
SLNLV   where letters  VNLS ,,,   indicate the materials in the system, the radius of the 
internal substrate of microsphere is  mr µ41 = . We have used the next parameters of materials 
[34] S  (spherical substrate): glass  5.1=Sn , L : metal layer,  116106.1 −⋅= sPω   [31] 
( THzf p

31055.2 ⋅=  ), for calculations we normally used  111106.1 −⋅= sν   , but sometimes we 
chose the value  ν   small enough to separate the influence the energy leakage to a radiating  
Q   factor of oscillations. Thickness of the metal layers is  nm8070 −  ,   N   is 2Si O  , the 
thickness  nm222  ,  46.1=Nn     [35] ,  V   (outer medium) is  air  ,  1=Vn .  
The imaginary part of oscillations in microspheres is not zero even for lossless material due to 
leakage energy (radiation) to a surrounding space. One can see from Fig.4(a) the 
eigenfrequencies  nf   increases at increase their number  n  .  
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Fig. 4 Lowest 37 eigenfrequencies and its Q-factors (Q = Re(fn)/2Im(fn)) for coated 
microsphere with 3-layered metallo-dielectric stack and angular quantum number l = 1. 
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However the behavior of  Q   factor is more complicated. At small frequencies the dielectric 
permittivity of metal has a large negative value. In this a case the depth of penetration of field 
in metal layers (skin depth) is small. Eigenoscillations have very high  Q   factor  810   in such 
area, similarly to a case of metallized microsphere in which optical fields practically do not 
leave the dielectric substrate. However at higher frequencies the wavelength of fields becomes 
comparable with skin-depth and thickness of metal layer. Such fields already can leak through 
thin metal layers and interfere with oscillations in other layers. Therefore the interference 
picture arises in the spectrum. Such feature allows qutrits to be radiated from microsphere in 
rather narrow spectrum band. 
 
6 Conclusion 
 
We have studied the properties of single-qutrit photons state in a microsphere coated by the 
alternating metallo-dielectric stack. We have shown that a vacuum field's amplitude has 
maximum value in a angular mode  1=l   state. Qutrit state can have rather long decoherence 
time in microsphere coated by an alternating metallo-dielectric stack due to high  Q  -factor of 
field oscillations. Such a state allows entanglement since the interaction of a system of two-
level atoms in a microsphere with a strong classical driving field. Based on the experiments 
reported in Refs. [19], [27], observation of qutrit states in a coated microsphere is realizable 
with current quantum optical techniques presently available. 
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Appendix A 
Let us calculate  
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We start from formula [23]  
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for spherical function  ),( ϕθm
lYY =  . We multiply (41) in the right and in the left by  m

lY   and 

then integrate over a spherical surface  θθϕ
ππ

sin
0

2

0
dd ∫∫ . In such integral in the left we integrate 

by parts and take into account the periodic boundary conditions for  Yl
m . In result the left part 

becomes form (40). In the right we take into account the orthogonality conditions for the 

spherical functions in form [ ] 1),(sin 2

0
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0
=∫∫ ϕθθθϕ

ππ
m

lYdd  . In result we obtain  )1(2 += llGl  . 
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Appendix B 
The form of Eq.(13) does not change in case of alternating spherical confocal layered 
structure with discontinuity of the dielectric permittivity. Really, at integration (11) with 
respect to radial coordinate  r   between  k   and  1+k   layers the next sum becomes 
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  (42) 

In (42) is taken into account, that on the internal boundary of layers  1rr =  the equality  
)(/)()()(/)()( 11111111 ++

′
+++++

′
+ = kkkkkkkkkk rrRrRrrRrR εε  obeys due to the boundary conditions of 

continuity the tangential fields. This is valid for all others terms in the internal boundaries. 
Resulting formula contains only terms from the external boundaries, as it is written in (13). 
 
Appendix C 
For calculating integral  )(αlI   we use the next formula [23] 

,)]()[1(
2
1)]([

2
1)]([)( 2

2

2
22

1

0

α
α

ααα iiii JiJxdxxJM −+== ′∫   (43) 

For  2/1+= li   in  TE  -waves case the eigenfrequency equation has form  0)(2/1 =+ αlJ  , 
therefore  )]([)]()[2/1()( 2/32

12
2/12/1 ααα +

′
++ == lll JJM  . In  TM  -case the eigenfrequency 

equation is given by  0)(2)(
2/12/1 =+ ′

++ ααα
l

JJl   , therefore for  TM   waves we obtain  
2

2/1
2
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